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Note 

New, but Flawed, Numerical 
r Vortex Patch Evolution in Two 

In this note we present reasons for the erroneous results obtained after a shots 
time integration by Buttke’s [l] new numerical algorithm. He attempts to compute 
vortex patch evolution for two-dimensional, inviscid, incompressible flows and 
claims that tangent-slope discontinuities or curvature singularities arise after a 
short. finite time on the boundaries of vortex patches [2]. By contrast, contour- 
dynamics algorithms with curvature-controlled adaptive node adjustment do no! 
exhibit these singularities in longer time integrations using identical initial condi- 
tions [3 ]. Reference [3] argues that such singularities are implausible on basic 
fluid dynamical grounds. 

A decade ago, Zabusky, Hughes, and Roberts [4] introduced contour dynamics, 
a numerical algorithm for computing the evolution of general piecewise-ccnstanr 
vorticity distributions. In this algorithm, each “boundary” or contour of discon- 
tinuous vorricity is represented (discretized) by a finite number of nodes. and the 
velocity at each node is calculated from discrete sums approximating contom 
integrals. The set of all contours comprising the piecewise-constant vorricity dis- 
tribution evolves in direct response to this self-induced velocity field. The algorithm 
has seen increasingly widespread use as a means of exploring ultra-high Reynolds 
number flows. For a recent review, see Ref. [5]. 

Buttke’s El ] numerical algorithm differs essentially from contour dynamics by 
the method of representing the contours from which the velocity field is caiculared. 
T-his algorithm actually makes use of two bounding contours about each jsimply- 
connected) region of uniform vorticity. Referring to Fig. 1: the first contouu (the 
d.ashed line) is represented by a finite number of nodes just as in contour dynamics 
(this wilf be termed the “nodal boundary”), while the second contour (the soi*id 
fine) is determined from the first by filling the interior of the nodal boundary wi.:h 
a number of contiguous square computational elements: of dimensions 2”‘L by 37. 
PI = 0, 1: 2, . ..) chosen such that the centers of the smallest elements lie next to: but 
just within. the nodal boundary. The ^‘stair.case” edge of this block of elements is 
termed the “block boundary.” The purpose of this is to enable the velocity field to 
be calculated from a sum over the contributions from each square element, rather 
than from a mathematically equivalent contour integration around the Mock 
boundaries. 
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FIG. 1. A sketch showing the two boundaries used in Buttke’s computational algorithm around a 
quarter of a circular patch (as in Fig. 2b of Ref. [I] ). The dashed line connecting the nodes gives the 
nodal boundary, and the solid line gives the block boundary. 

It is the peculiar nature of this velocity field which renders the algorithm 
unsuitable for numerical computation. There are logarithmically-divergent strain 
rates at all points along each block boundary where it takes a 90” turn [3]. For 
instance, near the 90’ turn shown in Fig. 2, 

where o is the jump in vorticity upon crossing into the shaded region, r is the dis- 

X 

FIG. 2. A local view of a 90” turn. 
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tance from the 90’ turn, and L is the side-length of the smallest square element [3] 
(r e L). Hence, if some nodes come close to the 90’ turns-this is not an unlikely 
possibility-the irregular strain field will disturb the trajectories of these nodes in 
an undesirable manner. The greatest possibility fcr a node to come close to a 90’ 
turn occurs in the vicinity of a local curvature maximum, for here adjacent nodes 
may get as close as one quarter of the minimum element side-length [I]. Here 
indeed Buttke [2] does observe an apparent tangent-slope discontinuity. We are 
left to conclude that the tangent-slope discontinuities along the block bouadarics ;!a 
effect induce apparent tangent-slope discontinuities along the nodal boundaries. 
Mesh refinement will not overcome the formation of these erroneous discon- 
tinuities, for, from purely geometrical considerations, a reduction in rhe side-Length 
L of the smaifest square element does not aher the probability of a node fee@ 
strain of a given value, since strain is a scale-invariant quantity (in (I ) above. nore 
that Y and L decrease proportionally). 

A final remark is made concerning “style” in computational fluid dynamics. Ne-& 
algorithms employing special formulations {e.g., niecewise-constant vorticity ) gain 
acceptance when they achieve high accuracy vvjth minimal compmationa! cost 
Contour dynamics and other Lagrangian curve-tracking algorithms achieve th;s by 
using the contour curvature K to dynamicalljr adjust resolution or redistrrbute 
nodes [S]. Curvature, specifically its variation with asclength s, is In fact a direct 
gauge of the accuracy of a calculation [6]. Buttke [I], however, does not wx t-k 
curvature to dynamically adjust resolution but instead allows nodes to move $eeiy 
in response to the computed velocity field. Nor does he show curvature in his corn- 
putation of a Finite-time tangent-slope discontinuity [2]? but one can infer fmzx his 
Fig. 2, a piot of the tangent angle 0 versus arclength S, that the curvature (&3/k) 
shows signs of containing spurious internodal-scale oscillations. internodal-scale 
oscillations indicate the presence of undesirable feedback paths in the dlsrrete 
system which are not part of the continuum system. It is imperative, therefore, that 
new algorithms first demonstrate control over the discretization process before 
attempting ro compute delicate fluid motions. 
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